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An exact analytical study is presented for the electrophoresis of an infinite insulating 
cylinder in the proximity of an infinite plane wall parallel to its axis. The electric field 
is exerted perpendicular to the particle axis in two fundamental cases: normal to a 
conducting plane and parallel to a non-conducting wall. The electrical double layers 
adjacent to solid surfaces are assumed to be thin with respect to the particle radius 
and the gap thickness between surfaces. The two-dimensional electrostatic and 
hydrodynamic governing equations are solved in the quasi-steady limit using bipolar 
coordinates and the typical electric-field-line, equipotential-line and streamline 
patterns are exhibited. Corrections to Smoluchowski’s equation for the electro- 
phoretic velocities of the particle are determined in simple closed forms as a 
function of A ,  the ratio of particle radius to distance of the particle axis from the wall. 
Interestingly, the electrophoretic mobility of the cylinder in the direction parallel to 
a dielectric plane increases monotonically as the particle approaches the wall and 
becomes infinity when the particle touches the wall. For the motion of a cylinder 
normal to a conducting plane, the presence of the wall causes a reduction in the 
electrophoretic velocity, which goes to zero as A + 1. It is found that boundary effects 
on the electrophoresis of a cylinder are much stronger than for a sphere at the same 
value of A. The boundary effects on the particle mobility and on the fluid flow pattern 
in electrophoresis differ significantly from those of the corresponding sedimentation 
problem with which comparisons are made. 

1. Introduction 
When a charged particle suspended in an electrolyte solution is subjected to an 

external electric field, the particle begins to move. This motion is called 
electrophoresis and is used in many technical applications. It is well known that a 
non-conducting particle of arbitrary shape will migrate in an unbounded fluid with 
a velocity U, given by the Smoluchowski equation, 

€5 
O - 4x7 

U --Em, 

provided that the local radii of curvature of the particle are much larger than the 
thickness of the electrical double layer surrounding the particle (Morrison 1970). In 
this equation, 7 is the fluid viscosity, 8 is the fluid permittivity, y is the zeta potential 
of the particle surface and Em is the imposed electric field. There is no rotational 
motion of the particle. The ratio U,IE, is known as the electrophetic mobility of the 
particle. 

In addition to the particle movement, the interaction between the electric field and 
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the ions within the mobile portion of the double layer causes a tangential velocity for 
the fluid within the diffuse layer. This ‘slip velocity’ at each point on the surface (or 
more precisely, on the outer edge of the diffuse layer), relative to the frame of the 
particle, is given by the Helmholtz expression for the electro-osmotic flow : 

Here, E, is the local electric field which has no normal component for a non- 
conducting surface with a thin double layer. 

In practical applications of electrophoresis to particle analysis or separation, 
colloidal particles are not isolated and will move in the presence of neighbouring 
particles and/or boundaries. Recently, much progress has been made in the 
theoretical analysis concerning the application of (1 .1)  to charged spheres surrounded 
by a thin double layer in the proximity of rigid boundaries (Morrison & Stukel 1970; 
Keh & Anderson 1985; Keh & Chen 1988; Keh & Lien 1991) and other spheres (Reed 
& Morrison 1976; Chen & Keh 1988; Keh & Yang 1990). An important result of these 
studies is that the influence of particle interactions and boundary effects on 
electrophoresis is much weaker than on sedimentation, because the disturbance to 
the fluid velocity field caused by an electrophoretic sphere decays faster (as r-3) than 
that caused by a stokeslet (as r- l ) ,  where r is the distance from the sphere centre. 
Another interesting finding of the boundary effects is that the electrophoretic 
velocity of a sphere near a rigid wall can be even larger than that for an identical 
sphere undergoing electrophoresis in an unbounded fluid (Keh & Chen 1988 ; Keh & 
Lien 1991). 

Although the electrophoretic motion of an isolated particle in an unbounded fluid 
has been investigated for geometries like a circular cylinder (Henry 1931 ; Morrison 
1971; Stigter 1978) or ellipsoid (Teubner 1982; Fair & Anderson 1989; Yoon & Kim 
1989)) the boundary effect on the electrophoresis of non-spherical particles has not 
yet been reported. The purpose of this paper is to determine the electrophoretic 
mobility of an infinite insulating cylinder near a large plane wall parallel to its axis 
in a transversely applied electric field and compare the results with those for the 
corresponding electrophoresis of a sphere. The Debye screening length is assumed to 
be much smaller than the particle radius and the surface-to-surface spacing between 
the particle and the wall. Thus, the effect considered in the analysis is not due to any 
interaction between the double layers surrounding the particle and adjacent to the 
wall. 

This paper is presented in five sections. In  $2 the general problem of two- 
dimensional creeping motion of an infinite circular cylinder near an infinite solid 
plane is exactly solved. Based on this analysis, the electrophoretic motion of a non- 
conducting cylinder in the direction normal to its axis and parallel to a dielectric 
plane is examined in $3. The closed-form analytical solution for the translational and 
angular velocities of the electrophoretic particle in a constant electric field is obtained 
in (3.17). Section 4 provides the exact solution of a complementary problem to that 
treated in $3, the electrophoresis of a cylinder in the direction perpendicular to its 
axis and to a conducting plane. The final result of the wall-corrected electrophoretic 
mobility for this case is presented in (4.10). In  $ 5 ,  a short summary of this work is 
given. 
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2. Creeping motion of a circular cylinder near a planar wall 
In this section we consider the two-dimensional creeping motion of an infinite 

cylinder of radius a in an incompressible viscous fluid near an infinite planar wall 
located at  a distance d from the axis of the cylinder. The cylinder has a translational 
velocity U, ex + U, e, and is rotating with an angular velocity Qe,, where ex, e, and 
e, are the unit vectors in rectangular coordinates. The planar wall is stationary. 

In addition to the Cartesian system (x, y,z), it is also convenient to introduce 
cylindrical bipolar coordinates (t, $, z ) ,  as illustrated in figure 1. The relationship 
between these two coordinate systems is (Jeffery 1922; Happel & Brenner 1983) 

c sinh $ c sin f 
X =  (2.1 a, b) 

where - 00 < $ < 00, 0 < f < 27c, and c is a characteristic length in the bipolar 
coordinates which is positive. 

The curves $ = constant correspond to a family of non-intersecting, coaxial circles 
(or cylinders) whose centres all lie along the x-axis. The special case $ = 0 generates 
a circle of infinite radius and corresponds to the entire y-axis (or the plane). $ = 
$o > 0 represents the circle (or the cylinder) of radius a = c cosech $o, with its centre 
at the point (x = d = ccoth$,, y = 0). The ratio of the radius of the cylinder to the 
distance of the axis of the cylinder from the plane is related to $o by 

cosh$-cosf’ ’ =  cosh$-cosf’ 

h = a /d  = sech t,b0. (2.2) 
The creeping motion and continuity equations are 

and 

r p v -  v p  = 0 

v-v = 0, 

where v(x)  is the fluid velocity distribution and p ( x )  is the dynamic pressure. Taking 
the curl of both sides of (2.3) and introducing (2.4) and the stream function result in 
a fourth-order linear partial differential equation for the stream function Y :  

V 4 Y  = V 2 ( V Y )  = 0. 
In (2.3)-(2.5), 

a a i  
ax y a y  

V = ex-+e - = -(cash$-cosf) (2.6~) 

(2.63) 

where eg and e,, are unit vectors in bipolar coordinates. Note that 

- sinh $ sin f e6 - (cosh $ cos f -  1) e 
cash $ - cos f 

ex = 

(cosh $ cos f -  1) eg- sinh $ sin f e . 
cash $ - cos f *I e, = (2.7b) 

The stream function is related to the velocity field in bipolar coordinates by the 
formulae 



214 H .  J .  Keh, K .  D .  Horng and J .  Kuo 

FIGURE 1. Geometrical sketch for the two-dimensional motion of a cylinder in the proximity of 
a plane wall. 

The boundary conditions appropriate to the present problem require that : 

v =  U,e,+U,e,+sZe,xa(-e$)  at $ =  $o, (2.9~) 
v = o  at $ = 0 (or z = 0), (2.9b) 
v + o  as (z2+y2):+ co and z 2 0. (2.9~) 

In (2.9a), e,  x ( - e$ )  = eg. 
A solution of the biharmonic equation (2.5) in bipolar coordinates, suitable for 

satisfying boundary conditions on the cylinder and plane, has been given by Jeffery 
(1922) and Wakiya (1975) : 

+ = c(cosh $- cos 6)-l A$(cosh $- cos 6) + (B+ C$) sinh $-D$ sin 6 
00 [ 

+ 
+d, sinh (n- 1) $1 cos nE 

+[a:, cosh (n+ 1) @ + b ;  sinh (n+ 1) $+ch cosh (n- 1) $ 

{[a ,  cosh (n+ 1) $+ b,sinh (n+ 1) $+c, cosh (n- 1) $ 
n=l 

+dh sinh (n- 1) $1 sinnt} . (2.10) I 
The coefficients A ,  B, C ,  D ,  a,, b,, c,, d,, ah, bk,  cb and dh (d, and d;  are trivial) are 
found from the boundary conditions given in (2.9) using (2.7) and (2.8). The 
procedure is straightforward, with the results 

(2.1 1 a, b)  

(2.11c, d )  C = - . ? l ,  U L ) = -  uz 
$0 $o - tanh ’ 

a, = -$4 tanh $o, b, = $4, c, = -a1, (2.11e-g) 

a,  = b, = c, = d, = ah = bk = ck = dh = 0 (2.11k) 
a; = -1s tanh a,h0, b; = Ls, c; = -a’ 1, (2.1 1 h-j) 

for n 2 2. 
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The drag force and torque per unit length exerted by the fluid on the cylinder can 
be determined from 

and 
a2 sinh 

*o cosh - cos ’ 

(2.12a) 

(2.12 b) 

respectively. In  (2.12), II is the total stress tensor, 

n = -p/+q[Vo+(Vo)T], (2.13) 

where / is the unit tensor. Applying (2.10) to  the integrals in (2.12) and using 
(2.6a), (2.8) and (2.13) result in the simple relationships 

( 2 . 1 4 ~ )  

(2.14b) 

F = 4x7 (De, + Ce,) , 
T = - 4nqa(A sinh $,, + C cosh $,) e,. 

Substituting ( 2 . 1 1 ~ 4 )  into (2.14), one has 

( 2 . 1 5 ~ )  

T = - 4nqa252 coth e,. (2.15b) 

Obviously, as the cylinder approaches the planar wall (with decreasing or 
increasing A )  its translational and rotational mobilities decrease steadily and vanish 
at the limit of A = 1. Note that, as shown in (2.15), the translation and rotation for 
this two-dimensional creeping motion are not coupled with each other. Thus, a 
sedimenting cylinder near a planar wall does not rotate if no external couple is 
exerted on it. This behaviour, which was also noted by Jeffrey & Onishi (1981), is 
different from that for the creeping motion of a sphere in the vicinity of a plane 
(O’Neill 1964; O’Neill & Stewartson 1967; Goldman, Cox & Brenner 1967). 

For the two-dimensional streaming motion of an infinite circular cylinder in an 
unbounded fluid, namely, the case of h = 0 or + 00, all of the coefficients given by 
(2.11) vanish and there exists no solution of the creeping motion equations (known 
as Stokes’ paradox). Treating a variety of problems in slender-body Stokes flow, Cox 
(1970) obtained the following asymptotic formula for the drag force per unit length 
acting on a relatively long circular cylinder of finite length in an unbounded fluid: 

F = 4nq{[ln (21/a) -$’ + O[ln (Z/U)]-~} U, (2.16) 

where U is the translational velocity of the cylinder (perpendicular to  its axis) and 
1 is the length of the cylinder. 

3. Electrophoresis of a circular cylinder parallel to a dielectric plane 
We now consider the two-dimensional electrophoretic motion of an infinite non- 

conducting cylinder of radius a (represented by $ = in the direction normal to its 
axis and parallel to an infinite dielectric plane (located a t  2 = 0). The applied electric 
field is constant and equals E ,  e,. The Debye length is assumed to be much smaller 
than the cylinder radius and the spacing between solid surfaces. Our objective is to 
determine the correction to the Smoluchowski equation ( 1 . 1 )  for the cylindrical 
particle due to the presence of the planar wall. 
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3.1. Electrical potential distribution 

The fluid outside the thin double layer is neutral and of constant conductivity; 
hence, the electrical potential distribution @(x) is governed by the Laplace equation : 

V2@ = 0 ,  (3.1)  

where V2 is given by (2 .6b) .  The local electric field E ( x )  equals -V@. Since the 
potential gradient far away from the cylinder approaches the applied electric field 
and both the cylinder and the wall are assumed to be perfectly insulating, the 
electrical potential is subject to the boundary conditions 

e,.V@ = 0 at  $ = $0, ( 3 . 2 ~ )  

e,-V@ = 0 at  @ = 0, (3 .2b)  

@ + - E , y  as ( x 2 + y 2 ) $ - + c o  a n d x 2 0 .  ( 3 . 2 ~ )  

A general solution to (3.1) suitable for satisfying (3 .2)  is (Umemura 1982) 

@ = GO+Gl$+ C [(Rncoshn$+Snsinhn@)cosn(+(Ricoshn$ 
m 

n-1 

+Shsinhn$) sinn(]-cE,(cosh$-cos()-lsin(, (3 .3)  

in which the last term is the electrical potential distribution that would exit in the 
absence of the cylinder. Applying boundary conditions (3 .2) ,  one can easily obtain 
the coefficients in (3 .3)  as 

G o l n n n  = G  = R  = S  = S ' = O  ( 3 . 4 ~ )  

and R' n = -4cE m (e2nSo- 1)-1, (3 .4b)  

for n 2 1. Substituting (3.4) into (3 .3) ,  we have the solution for the electrical 
potential in the fluid phase 

The electric field function V is related to the electrical potential by the formulae 

(3 .6a,  b )  

Using (2 .1)  and the chain rule, one can easily find that the above relationships are 
equivalent to 

(3 .7a,  b )  

The imaginary part of the complex potential satisfying the above Cauchy-Riemann 
equations and with its real part given by (3 .5)  is the electric field function: 

3.2. Fluid velocity distribution 

Having obtained the solution for the electric field, we can now proceed to find the 
fluid velocity field. Because the Reynolds number associated with electrophoretic 
motions is small, equations (2.3)-(2.5) apply for the fluid motion outside the thin 
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double layers. At the surfaces of the cylinder and the planar wall, the electric field 
acting on the diffuse ions within the double layer produces a relative tangential fluid 
velocity at  the outer boundary of the double layer. This velocity is described by the 
Helmholtz equation (1.2). Also, a uniform electro-osmotic flow far away from the 
cylinder is generated by the tangential fluid velocity a t  the planar surface. Therefore, 
the boundary conditions for the flow field are 

v = Uyey+aQe +-W@ €6 
4x7 

v = - W @  €6, 
4x7 

at 1c. = $0, (3.94 

a t  $ = 0, (3.9b) 

as (x2+y2)i+ co and x 2 0, (3.9c) 

where l& and 5, are the zeta potentials associated with the cylinder and the planar 
wall respectively ; U ,  and SZ are respectively the translational and angular velocities 
of the electrophoretic cylinder to be determined. Note that the normal component of 
W@ vanishes at  the solid surfaces as required by ( 3 . 2 ~ )  and (3.2b), and the tangential 
component of the electric field is obtained from the potential distribution given by 
(3.5). Because the cylinder is freely suspended in the fluid and the particle ‘surface’ 
encloses a neutral body (charged interface plus diffuse ions), the net force and net 
torque per unit length exerted by the fluid on the cylinder must vanish. 

Since the governing equation and the boundary conditions are linear, the total flow 
can be decomposed into two parts. First, we consider the fluid motion about an 
infinite cylinder (at + = $o) moving parallel to the planar wall (at $ = 0) with 
translational velocity U,e, and angular velocity Qe, but with no tangential 
electrokinetic velocity at the solid surfaces. The stream function for this flow can be 
obtained by substituting (2.11) into (2.10) and taking U, = 0, with the result 

[$(cash$-cos() coth$-,-sinh+ccoth$, 
y1 = cosh $ - cos [{ ($+-) 

U 
+sinh$cos((cosh$ c ~ t h $ ~ - s i n h $ ) ] - ~ $ s i n h +  

$0 

The force and torque per unit length on the cylinder are obtained from (2.15) with 
U, = 0 as 

(3.1 1 a )  

= - 4x7a2SZ coth $o e,. (3.11b) 

Next, we consider the flow caused by the electrokinetic tangential velocity at  the 
surface (i.e. outer edge of the double layer) of a stationary cylinder near a planar wall 
with gw = 0:  

(3 .12~)  

v2 = 0 at $ = 0, (3.12b) 

v 2 + o  as ( x 2 + y 2 ) f + m a n d x 2 0 .  (3.12 c) 
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Superimposing the velocity field v,  with that derived from (3.10) yields the total 
velocity field produced by the transverse electrophoretic motion of a non-conducting 
cylinder parallel to a neutral dielectric plane. By obtaining the force and torque 
exerted on the stationary cylinder, individually adding these to the force and torque 
given by (3.11) and equating the results to zero, the translational and rotational 
velocities of the cylinder will result. For the more general case that + 0, the wall 
correction for the particle velocities can be obtained by replacing the variable cp in 
the results for the neutral plane with the difference in zeta potential between the 
cylinder and the planar wall, cp-cw (Keh & Anderson 1985; Keh & Chen 1988). 

The stream function Y2 for the flow caused by the electrokinetic velocity a t  the 
surface of the stationary cylinder can also be expressed by (2.10), and the coefficients 
A ,  B, C, D, a,, b,, c,, d,, a;, bb, cb and dk should be determined by the boundary 
conditions (3.12). The procedure to obtain these coefficients by applying (3.12) to 
(2.10) and using (3.5), ( 2 . 6 ~ )  and (2.8) is straightforward but tedious, with the results 

4$o - sinh 4$0 
49k0 sinh2 $o sinh 21,h~ ' 

A = Uo B = - A ,  

coth 2$, c = uo , D = O ,  
$0 

sinh $o cosh 2$0 - 2$0 cosh $o 

2$0 sinh $o sinh 29h0 
a, = U, 1 

(3.13a, b)  

(3.13c, d )  

e-""[(n- 1) sinh (n+ 1) $ o -  (n+ 1 )  sinh (n- 1)  $0]  

4(sinh2 n$o - n2 sinh2 $ o )  a, = Uo [2 sinh $, 

+2ncosh $ocothn$o- (n+ 1 )  e-@ocoth (n+ 1 )  $o 

- ( n - l ) e ~ ~ c o t h ( n - l ) $ , ]  (n  > 2), (3.13h) 

(n- 1 )  [ C O S ~  (n+ 1)  $ o - ~ ~ ~ h  (n- 1) $0]  
b, = an (n 2 21, (3.13i) 

- (n - 1 )  sinh (n + 1)  $o (n  + 1 )  sinh (n - 1) 

n+1 
n-1 c ,  = - a  ,, d,  =-- b,  (n 2 2 ) j  (3.13j, k) 

a; = 6; = cb = d; = 0 (n 2 l ) ,  (3.13 1) 

where Uo = ecp E,/4ny. 
The force and torque per unit length exerted on the stationary cylinder by the fluid 

due to the electrokinetic motion can be obtained by the substitution of (3.13a, c ,  d )  
into (2.14). The results are 

coth 2$, 
F, = 4nyuo e, 3 

$0 

( 3 . 1 4 ~ )  

(3.14b) 

3.3. Derivation of the particle Velocities 
Since the net force and net torque acting on the electrophoretic cylinder must vanish, 
we have 

F , + F , = o ,  T , + T , = o .  (3.15a, b)  
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FIQURE 2. Plots of the translational and rotational velocities of a cylinder (solid curves, aa 
computed from (3.17)) and of a sphere (dashed curves, obtained from Keh & Chen 1988) undergoing 
electrophoresis parallel to a dielectric plane, versus the separation parameter A. 

To determine the translational velocity U, and rotational velocity B of the cylinder 
near a neutral planar wall, the above equations must be solved after substituting 
(3.11) and (3.14) into them. The results are 

sech @o 
(3.16a, b )  4 4 U,=-E,coth2@,, i2 = - J E W  

4x7 4 x 7 ~  sinh 2@0 * 

When the planar surface has a finite zeta potential Cw, the translational and 
angular velocities of the cylinder become 

The connection between @o and the separation parameter A is given by (2.2). 

3.4. Results and discussion 

Values of the normalized translational and rotational velocities of the electrophoretic 
cylinder evaluated from (3.17) with various values of separation parameter A are 
plotted by the solid curves in figure 2. For the corresponding electrophoretic motion 
of a sphere parallel to a dielectric plane, a combined analytical-numerical solution 
was developed by using spherical bipolar coordinates (Keh & Chen 1988). The wall- 
corrected reduced translational and angular velocities of the electrophoretic sphere 
as a function of A (in this case A is the ratio of the sphere radius to the distance of 
the sphere centre from the plane wall) are drawn by the dashed curves in figure 2 for 
comparison. As expected, both the cylindrical and spherical particles will move 
(without rotation) with the velocity that would exist in the absence of the wall, given 

8 F L I  231 
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FIQURE 3. Electric field lines (solid curves) and equipotential lines (dashed curves) for the 
electrophoretic motion of a cylinder parallel to a dielectric plane with A = 0.8. 

by the Smoluchowski equation ( l . l ) ,  as A + O .  Note that an important difference 
between electrophoresis and sedimentation in the unbounded case is that a solution 
to Stokes flow for an infinite cylinder exists for the former but not for the latter. 

Examination of the results shown in figure 2 reveals an interesting feature. The 
electrophoretic mobility of the cylinder is a monotonic increasing function of A and 
becomes infinity in the limit of A + 1 .  The behaviour is understandable because the 
crowding of the electric field lines when they squeeze between the particle and the 
wall increases the local electrical force driving the particles’ motion (Keh &, Chen 
1988). In figure 3, the electric field lines and equipotential curves for the case of a 
cylinder with A = 0.8 are presented using (3.5) and (3.8). The local electric field at the 
particle ‘surface’ on the near side to the planar wall is enhanced in comparison 
with that on the far side. Obviously, the influence of this enhancement on the particle 
velocity is very important and much stronger than the effect of viscous retardation 
caused by the wall. 

On the other hand, the electrophoretic mobility of the sphere is a monotonic 
decreasing function of A for all A < 0.77. In  this region, the effect of the viscous drag 
of the wall is stronger than the wall effect on the interaction between the sphere and 
the electric field. When the gap width between solid surfaces is small, the effect of the 
enhancement of the local electric field a t  the particle surface becomes dominant and 
the electrophoretic mobility of the sphere increases with increasing A. Note that the 
wall effect on the electrophoretic mobility of a cylinder (76 YO increase for A = 0.95) 
is much more significant than that on a sphere (2.2 YO increase for A = 0.95). This is 
because the effective wall-interaction area that offers electrostatic enhancement and 
hydrodynamic resistance to the motion of a cylinder is much larger than that to the 
movement of a sphere. 

Although an infinite cylinder migrating parallel to a planar wall under a body- 
force field does not rotate (as we have seen in SZ), an electrophoretic cylinder or 
sphere will rotate about an axis which is perpendicular to the direction of the applied 
electric field and parallel to the planar wall. The direction of rotation is opposite to 
that for a sphere sedimenting in the same direction parallel to a plane. A discussion 
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FIGURE 4. Streamlines around a cylinder moving parallel to a plane wall with A = 0.5. (a) 
Electrophoresis. Curve 1 ,  41tyY/ce&,E, = 0.05; 2, 0 ;  3, -0.05; 4, -0.2; 5, -0.4; 6, -0.6. ( b )  
Sedimentation. Curve 1 ,  Y/cU, = -0.05; 2, -0.25; 3, -0.5; 4, -1.0; 5, -1.5; 6, -2.0. 

of this counter-intuitive result for electrophoretic particles was provided by Keh & 
Chen (1988). In spite of that a torque-free sphere has a lower electrophoretic mobility 
near the planar wall than that for a non-rotating sphere (Keh & Chen 1988), which 
is also opposite to the behaviour for a sphere moving under gravity near boundaries, 
the electrophoretic mobility of an infinite cylinder near the wall is independent of the 
external torque exerted on the cylinder. This phenomenon is understandable 
knowing the fact that there is no coupling between translation and rotation for the 
creeping motion of a cylinder near a planar wall considered in $2. 

For the electrophoretic motion of a cylinder in a transverse electric field parallel 
to a neutral planar wall, the stream function for the flowing fluid can be evaluated 
from the combination of !PI given by (3.10) and Y2 in the form of (2.10) with 
coefficients given by (3.13). The streamlines for the situation when the radius of the 
cylinder is equal to the surface-to-surface distance between the cylinder and the wall 
are depicted in figure 4(a). The contour pattern shows the distortion of fluid 
recirculation around the cylinder (which corresponds to a potential doublet) due to 
the planar wall in the proximity. Note that the fluid flow in figure 4 (a)  contains two 
stagnation points on the wall where the two recirculation regions meet each other. If 
s denotes the distance between either of the stagnation points and the origin of the 
coordinate system, then the value of s l d  depends on the separation parameter A ,  but 
is independent of the electrophoretic velocity of the particle. Here we present the 
results of s l d  versus h in the first two columns of table 1, from which a monotonic 
decreasing function is observed. 

Figure 4 ( b )  corresponds to the streamline pattern for the movement of a cylinder 
driven by a body force parallel to a planar wall, which can be made using the formula 
given by (3.10). In  comparison with the situation of electrophoresis, the fluid motion 
in figure 4 ( b )  contains only a global flow and no stagnation point appears on the wall. 
This difference is because the disturbance to the fluid velocity field caused by an 
electrophoretic particle, which is that of a potential dipole, decays much faster than 
that caused by a stokeslet. 

0-2 
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S h b 
A d d d 

- - - 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 

0.5770 
0.5745 
0.5703 
0.5629 
0.5508 
0.5318 
0.5019 
0.4535 
0.3649 
0.281 1 

1.4214 
1.4134 
1.3916 
1.3564 
1.3004 
1.2224 
1.1084 
0.9337 
0.6720 
0.5124 

2.0114 
1.9985 
1.9690 
1.9289 
1.8739 
1.7887 
1.7001 
1.8001 
1 .9000 
1.9500 

TABLE 1. The variations of s / d ,  b /d  and hld with respect to the separation parameter A. s is the 
distance of either stagnation point on the dielectric plane (in figure 4a) from the origin of the 
coordinate system. b and h are the distances of stagnation points on the conducting plane and on 
the axis, respectively (in figure 7a), from the origin of the coordinate system. 

4. Electrophoresis of a circular cylinder normal to a conducting plane 
I n  this section we consider the two-dimensional electrophoretic motion of an 

infinite non-conducting cylinder of radius a in the direction perpendicular to its axis 
and to an infinite conducting plane. A constant electric field E, e, is imposed normal 
to the plane a t  x = 0. As in the previous section, the assumption of a thin electrical 
double layer is employed. Our purpose is to find the wall-corrected electrophoretic 
velocity of the cylindrical particle. 

4.1. Electrical potential distribution 

The electrostatic equation governing the potential distribution @ ( x )  is the Laplace 
equation (3.1). The planar wall is assumed to  be perfectly conducting and its 
potential is taken as zero for convenience. Thus, the boundary conditions for @(x) are 

e l .V@ = 0 a t  @ = @ O >  (4.1 a) 

@ = O  a t  @ = 0, (4.lb) 
@+-E,x as (x2+y2)i+ 00 and x 2 0. ( 4 . 1 ~ )  

The solution form for the electrical potential is still given by (3.3). Applying (4.1) 
to (3.3) and utilizing the requirement that the potential field is symmetric about the 
x-axis, one obtains the unknown coefficients in (3.3) as 

G = Q  = R  = R ' = S ' = O  ( 4 . 2 ~ )  

and S ,  = - 4 ~ E , ( e ~ ~ @ o +  l ) - l ,  (4.2b) 

for n 2 1. 
Substitution of (4.2) into (3.3) leads to the solution for the electrical potential in 

the fluid phase: 

0 1 n  n n  

The corresponding electric field function, which satisfies (3.7), is 

(4.4) 
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4.2. Fluid velocity distribution 

The fluid motion outside the thin double layer is governed by (2.5) and subject to the 
following boundary conditions : 

v = o  at $ = 0, (4 .5b)  

where U, is the electrophoretic velocity of the cylindrical particle to be determined. 
The cylinder does not rotate owing to the symmetry of the flow field about the x-axis. 
The potential distribution in ( 4 . 5 ~ )  is given by (4 .3) .  

Similarly to the case considered in the previous section, the total flow can be 
decomposed into two parts : the creeping flow about an infinite cylinder translating 
perpendicular to its axis and a planar wall with a velocity U, ex and the fluid motion 
produced by the tangential electrokinetic velocity at  the surface of a stationary 
cylinder near a planar wall. The stream function for the first part can be obtained by 
substituting (2.11) into (2.10) and taking U, = SZ = 0, with the result 

v + o  as (x2+y2):+m a n d x 2 0 ,  ( 4 . 5 4  

aU, sinh $, sin 5 
(cosh $ - cos E )  ($, - tanh $,) Y, = ($ - 6 sinh 2$ + tanh $, sinh2 $). (4 .6)  

Equation ( 2 . 1 5 ~ )  with U, = 0 gives the drag force per unit length exerted by the fluid 
on the cvlinder : 

(4 .7)  
4 w J x  F , = -  

$, - tanh $, ex' 
There is no torque acting on the translating cylinder. 

The velocity field v, for the second part of the total flow is subject to the boundary 
conditions given by (3.12) with @ provided by (4 .3) .  The stream function Y2 
associated with v2 can also be expressed by (2.10), and the coefficients A ,  B,  C, . . ., etc. 
should be determined by applying (3.12) to (2.10) and using (4 .3) ,  ( 2 . 6 ~ )  and (2.8). 
After considerable algebraic manipulation, one obtains 

( 4 . 8 ~ )  A = B = C = 0, 

4e-*o( 1 - e-*o) sinh3 $, 
1 + 9, sinh 2$, - cosh 2$, ' 

D = U,  (4.8b) 

a, = b, = cn = d ,  = 0 (n 2 l),  ( 4 . 8 ~ )  

OD, 
, 2$,-sinh2$ 

a, = 
~ ( C O S ~  2$0 - 1) 

( 4 . 8 d )  

e-"*o[(n+ 1)sinh(n-1)$,-(n-1)sinh(n+1)$,] 
4 cosh n$,(sinh2 n$, - n2 sinh2 $o) 

a; = U,, 

x [ (n  + 1) (1 - e-*o) sinh ( n  + 1) $, + ( n  - 1) ( 1 - e*o) sinh (n - 1) 9,] (n 2 2) ,  
(4 .89)  

( n  - 1) [cosh ( n  + 1) $,, - cosh ( n  - 1 ) $,I 
(n+l)sinh(n-l)$,-(n-l)sinh(n+l)$O b' = a; (n 2 21, (4 .8h)  

(4 .8 i ,  j) 

where U, = E J 4 n y .  
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A 

FIGURE 5. Plots of the normalized electrophoretic and hydrodynamic mobilities of a cylinder (solid 
curves, as computed from (4.10) and (4.7)) and of a sphere (dashed curves, obtained from Keh Q 
Lien 1991 and Brenner 1961) in the direction normal to a plane wall, versus the separation 
parameter A. 

The force per unit length acting on the stationary cylinder due to the flow caused 
by the electrokinetic velocity at the surface of the cylinder, which can be obtained 
by the substitution of (4.8a, b )  into (2.14a), is 

4e-@o( 1 - e-@o) sinh3 @o 8 = 4XrlU0 
1 + +o sinh 2@0 - cosh 27,h0 ex' (4.9) 

4.3. Derivation of the particle velocity 

Because the electrophoretic cylinder is freely suspended in the fluid, the net force 
exerted on the cylinder (plus the thin diffuse layer) vanishes. Substitution of (4.7) 
and (4.9) into ( 3 . 1 5 ~ )  yields the electrophoretic velocity U, of the cylinder near a 
conducting plane : 

e l  U z = J E m  
4e-@o( 1 - edo) ( 7,ho - tanh @ o )  sinh3 7,ho 

1 + @o sinh 2@0 - cosh 2$r0 4x7 
(4.10) 

By the linearity of the problem, the same magnitude of the particle velocity is 
predicted for a given separation parameter A ,  which is related to yi0  by (2.2), whether 
the particle is approaching the planar wall or receding from it. 

4.4. Results and discussion 

Numerical values for the wall-corrected reduced electrophoretic mobility of a 
cylinder, calculated from (4.10) for various values of A ,  are plotted by a solid curve 
in figure 5.  The corresponding results for the electrophoretic motion of a sphere 
normal to a planar wall obtained by using spherical bipolar coordinates (Keh & Lien 
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FIGURE 6. Electric field lines (solid curves) and equipotential lines (dashed curves) for the 
electrophoretic motion of a cylinder normal to a conducting plane with A = 0.8. 

1989, 1991) are drawn by a dashed curve in the same figure for comparison. When 
h + 0, the particle moves with the velocity given by Smoluchowski’s equation. The 
electrophoretic mobility then decreases steadily as the particle approaches the wall 
(with increasing A )  going to zero in the limit. As a comparison to figure 3, the electric 
field lines and equipotential curves for the case of a cylinder (upon which the electric 
field is imposed perpendicular to a conducting plane) with h = 0.8 are drawn in figure 
6 using (4.3) and (4.4). The local electric field at the particle surface on the side next 
to the wall is depressed compared with that on the far side. This demonstrates that 
the effect of the conducting plane on the interaction between particle and electric 
field will reduce the electrophoretic velocity of the particle. Similarly to the 
electrophoretic motion of particles parallel to a planar wall considered in $3, the wall 
effect on the mobility reduction for a cylinder (41 % for h = 0.5) is much more 
significant than that for a sphere (7.9% for h = 0.5). 

For the motion of an infinite cylinder on which a constant transverse body force 
per unit length Fe, (e.g. a gravitational field) is imposed normal to a planar wall, the 
particle velocity can be determined by (4.7) with 4 replaced by -Fe,. The creeping- 
motion velocity of a sphere migrating normal to a planar wall driven by a body force 
was obtained by Maude (1961) and Brenner (1961). The numerical results for the 
wall-corrected normalized hydrodynamic mobilities of the cylindrical and spherical 
particles for various values of h are also presented in figure 5 for comparison. Since 
there exists no solution of the Stokes equations for the two-dimensional streaming 
motion perpendicular to the axis of an infinite cylinder in an unbounded fluid, the 
asymptotic formula given by (2.16) is used to determine the mobility of an isolated 
cylindrical particle. A length-to-radius ratio (Z/a) of the finite cylinder equal to 1000 
is chosen in (2.16) to calculate the characteristic velocity U*: 

F 
4RT 

U* z 7.1009-. (4.11) 
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FIQURE 7. Streamlines around a cylinder migrating normal to a plane wall with A = 0.5. (a )  
Electrophoresis. Curve 1, 4 q ! P / c e [ E ,  =-0.10; 2, -0.05; 3, 0 ;  4, 0.05; 5, 0.10. ( b )  
Sedimentation. Curve 1, !P/cU, = 0.6; 2, 0.4; 3, 0.2; 4, 0 ;  5, -0.2; 6, -0.4; 7, -0.6. 

In figure 5 ,  we restrict the comparison to h % a / l  so that end effects of the cylinder 
are unimportant. For the creeping motion of a sphere, the characteristic velocity U* 
is related to the applied force by the Stokes law. Obviously, the wall effect on 
electrophoresis is much weaker than on a sedimenting particle. Also, the reduction 
in hydrodynamic mobility caused by a nearby planar wall is much more significant 
for a cylinder than for a sphere. 

The stream function for the flow field generated by the electrophoretic motion of 
a cylinder in a transverse electric field normal to a planar wall can be evaluated from 
the combination of Yl given by (4.6) and Y2 given by (2.10) and (4.8). In figure 7 (a), 
the streamline pattern for the case of h = 0.5 is drawn. In addition to the local ‘inner’ 
fluid recirculation in the vicinity of the cylinder, there are two symmetric ‘outer’ 
recirculation regions extending to the whole remaining fluid phase. The direction of 
this outer recirculation near the axis of symmetry (x-axis) is opposite to that of the 
particle’s movement. Note that, in figure 7 ( a ) ,  three stagnation points appear on the 
planar wall: one is at  the origin of the coordinate system, the other two are on each 
side of it a t  a distance b from the origin. Also, there is one more stagnation point on 
the axis of symmetry at  a distance h from the plane. The circulating streamline 
Y = 0 intersects the axis at this point orthogonally. The values of b /d  and h / d  depend 
on A, but are independent of the particle velocity. In table 1 we also list the results 
for b / d  and h/d  for various values of A. For b / d  versus A, a monotonic decreasing 
function is obtained. When h 2 0.7, h/d % 1 + A  and the stagnation point on the axis 
is very close to the far-side pole of the particle. 

In  figure 7 (b) ,  the situation for a cylinder sedimenting perpendicular to its axis and 
to a planar wall is considered. The stream function for this case can be evaluated 
from (4.6). Contrary to the streamline pattern for electrophoresis, there is no inner- 
and-outer recirculation or stagnation point on the plane other than the origin of the 
coordinate system. 
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5. Summary 
In this paper, the exact solutions for the problem of two-dimensional electro- 

phoretic motion of a cylindrical particle in the presence of a plane wall have been 
obtained using bipolar coordinates in two fundamental cases : migration occurring 
parallel to a dielectric plane and movement normal to a conducting wall. Throughout 
the analysis, the assumption of thin double layers adjacent to solid surfaces is 
employed. Some interesting results which differ significantly from those of the 
corresponding sedimentation problem have emerged. When the electric field is 
applied parallel to a plane wall, the magnitudes of both the electrophoretic mobility 
and the angular velocity of the cylinder increase monotonically as the particle 
approaches the wall and become infinity as A + 1. This behaviour is due to the feature 
of squeezed electric field lines in the gap between the particle and the wall. On the 
other hand, the mobility of a cylinder undergoing electrophoresis normal to a plane 
wall is a monotonic decreasing function of the separation parameter h and vanishes 
in the limit of A = 1, because the wall effect on the interaction between particle and 
electric field in this situation is to decrease the particle velocity. The stream function 
for the fluid flow in two representative cases of electrophoresis has been depicted in 
figures 4(a )  and 7 ( a ) ,  while the streamline pattern for the corresponding cases of 
sedimentation is shown in figures 4(b)  and 7 ( b )  for comparison. 

We have seen in figures 2 and 5 that the boundary effects on the electrophoretic 
motion of a cylinder are much more significant than those of a sphere. It would be 
of interest to know how a plane wall affects the electrophoresis of other non-spherical 
particles, say, ellipsoids of revolution. This problem, which requires a combined 
analytical-numerical solution procedure, is now under investigation. 

This research was supported by the National Science Council of the Republic of 
China. 
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